
Discrete Representation of Signal

• Represent continuous signal into discrete form.

Digitizing the signal (A-D)

Sampling:
measuring amplitude of signal at time t

16,000 Hz (samples/sec) Microphone
(“Wideband”):

8,000 Hz (samples/sec) Telephone

Why?
– Need at least 2 samples per cycle

– max measurable frequency is half sampling rate

– Human speech < 10,000 Hz, so need max 20K

– Telephone filtered at 4K, so 8K is enough

Quantization
Representing real value of each amplitude as integer

8-bit (-128 to 127) or 16-bit (-32768 to 32767)

Formats:
16 bit PCM

8 bit mu-law; log compression

LSB (Intel) vs. MSB (Sun, Apple)

Headers:
Raw (no header)

Microsoft wav

Sun .au

40 byte

header

Digitizing Speech (II)

Discrete Representation of Signal

• Byte swapping
– Little-endian vs. Big-endian

• Some audio formats have headers
– Headers contain meta-information such as sampling

rates, recording condition
– Raw file refers to 'no header'
– Example: Microsoft wav, Nist sphere

• Nice sound manipulation tool: sox.
– change sampling rate
– convert speech formats

Mel-Frequency Cepstral Coefficients
(MFCC)

Windowing

Slide from Bryan Pellom

Windowing

• Why divide speech signal into successive
overlapping frames?
– Speech is not a stationary signal; we want information about

a small enough region that the spectral information is a
useful cue.

• Frames
– Frame size: typically, 10-25ms

– Frame shift: the length of time between successive frames,
typically, 5-10ms

Common window shapes

• Rectangular window:

• Hamming window

Window in time domain

MFCC

Discrete Fourier Transform

• Input:
– Windowed signal x[n], n=0 … N-1

• Output:
– For each of N discrete frequency bands
– A complex number X[k] representing magnidue and

phase of that frequency component in the original
signal

• Discrete Fourier Transform (DFT)

• Standard algorithm for computing DFT:
– Fast Fourier Transform (FFT) with complexity N*log(N)
– In general, choose N=2n , e.g 256, 512 or 1024

Discrete Fourier Transform computing
a spectrum

• A 24 ms Hamming-windowed signal

– And its spectrum as computed by DFT

MFCC

Mel-scale
• Human hearing is not equally sensitive to all

frequency bands

• Less sensitive at higher frequencies, roughly >
1000 Hz

• I.e. human perception of frequency is non-
linear:

Mel-scale

• Mel-scale is approximately linear below 1 kHz

and logarithmic above 1 kHz

• Definition:

Mel Filter Bank Processing

• Mel Filter bank
– Uniformly spaced before 1 kHz

– logarithmic scale after 1 kHz

Mel-filter Bank Processing

• Apply the bank of filters according Mel scale to
the spectrum

• Each filter output is the sum of its filtered
spectral components

MFCC

Log energy computation

• Compute the logarithm of the square
magnitude of the output of Mel-filter bank

Log energy computation

• Why log energy?

Logarithm compresses dynamic range of
values
– Human response to signal level is logarithmic

– humans less sensitive to slight differences in amplitude
at high amplitudes than low amplitudes

Makes frequency estimates less sensitive
to slight variations in input (power
variation due to speaker’s mouth moving
closer to mike)

Phase information not helpful in speech

MFCC

The Cepstrum

• One way to think about this
– Separating the source and filter
– Speech waveform is created by

• A glottal source waveform
• Passes through a vocal tract which because of its shape

has a particular filtering characteristic

• Articulatory facts:
– The vocal cord vibrations create harmonics
– The mouth is an amplifier
– Depending on shape of oral cavity, some

harmonics are amplified more than others

We care about the filter not the source

• Most characteristics of the source
– F0

– Details of glottal pulse

• Don’t matter for phone detection

• What we care about is the filter
– The exact position of the articulators in the oral

tract

• So we want a way to separate these
– And use only the filter function

The Cepstrum
• The spectrum of the log of the spectrum

Spectrum Log spectrum

Spectrum of log spectrum

Thinking about the Cepstrum

Mel Frequency cepstrum

• The cepstrum requires Fourier analysis
• But we’re going from frequency space back to

time
• So we actually apply inverse DFT

• Details for signal processing gurus: Since the log
power spectrum is real and symmetric, inverse
DFT reduces to a Discrete Cosine Transform (DCT)

Another advantage of the Cepstrum

• DCT produces highly uncorrelated features

• We’ll see when we get to acoustic modeling that
these will be much easier to model than the
spectrum
– Simply modelled by linear combinations of Gaussian

density functions with diagonal covariance matrices

• In general we’ll just use the first 12 cepstral
coefficients (we don’t want the later ones which
have e.g. the F0 spike)

MFCC

Dynamic Cepstral Coefficient

• The cepstral coefficients do not capture energy

• So we add an energy feature

• Also, we know that speech signal is not constant
(slope of formants, change from stop burst to
release).

• So we want to add the changes in features (the
slopes).

• We call these delta features

• We also add double-delta acceleration features

Delta and double-delta

• Derivative: in order to obtain temporal information

Typical MFCC features

• Window size: 25ms
• Window shift: 10ms
• Pre-emphasis coefficient: 0.97
• MFCC:

– 12 MFCC (mel frequency cepstral coefficients)
– 1 energy feature
– 12 delta MFCC features
– 12 double-delta MFCC features
– 1 delta energy feature
– 1 double-delta energy feature

• Total 39-dimensional features

Why is MFCC so popular?

• Efficient to compute

• Incorporates a perceptual Mel frequency scale

• Separates the source and filter

• IDFT(DCT) decorrelates the features
– Improves diagonal assumption in HMM modeling

• Alternative

– PLP

o Linear Prediction
o Perceptual Linear Prediction (PLP)

Speech Processing in Noisy
Environment

Types of Noise

• Additive Noise
– Degradation of the signal due to ambient acoustic noise

– Extent of problem will depend on Signal-to-Noise Ratio (SNR), but
also on how ‘speech like’ the noise is

– Corresponds to addition of speech and noise signals in the time-
domain

• Convolutive Noise
– Changes in the speech signal due to changing room acoustics,

changes in microphone, communication channel, etc

– Corresponds to convolution with a speech signal in the time-domain

• A block diagram of noise corruption

Clean

speech signal

Channel

Distortion

Corrupted

speech signal

Additive noise

+

Convolutional noise

s(t) h(t) n(t) y(t)

Noise Corruption

Interaction with Front-End Processing

• How different types of noise impact on the recognition
process ?.. need to understand how they are transformed by
front-end processing (i.e. feature extraction block)

FB Input

Speech
DFT Cosine

transform

log

Type of
Noise

Time
Domain

DFT Filter
Bank

log Cosine
Transform

Additive + + ~ + ? ~ max ?

Convolutive * x ~ x ~ + ~ +

Feature Extraction

Convolutive Noise Compensation

• Convolutive noise turns out to be the easiest to deal with

• Manifested as addition of constant, or slowly varying, log
power spectrum or MFCC vector

• Simplest solution is cepstral mean subtraction (in
MFCC/cepstral domain) or spectral mean subtraction (in log
power spectrum domain)

• Cepstral Mean Subtraction (CMS)

– mean (over a num of frames) subtraction

– lowpass filtering

– eliminates communication channel spectral shaping

Nmmkcmlcmlc kCMS ,...,1)),;((avg);();(

Cepstral Mean Subtraction (CMS)

RASTA Processing

• Vocal tract cannot move too slow or too fast

 rate of change< norm rate of change > norm

TIME

filter

trajectory of parameter
as estimated from the signal

time

corrected trajectory

RASTA Processing

Approximated by IIR Filter:

1

431

98.01

2.01.01.02.0
)(

z

zzz
zH

RASTA filtering

10

0

-10

-20

-30

-40
1 10 100 0.1 0.01

M
a

g
n

it
u

d
e

 [
d

B
]

Frequency [Hz]

-100 0 100 300 200 400

Time [s]

Impulse response

Frequency characteristic

 frames

0.0

0.0

RASTA filtered

•Filtering log filter bank output (or equivalently

cepstral) temporal trajectories by band pass filter

•Remove slow changes to compensate for the

channel effect (≈CMS over 0.5 sec. sliding window)

•Remove fast changes (> 25Hz) likely not caused

by speaker with limited ability to quickly change

vocal tract configuration

original

Additive Noise Compensation

• In the linear spectral domain, additive noise is still additive

• Therefore, noise compensation can be achieved by
subtracting an estimate of the noise spectrum from the noisy-
speech spectrum

• Coping with additive noise explicitly in the MFCC domain is
more difficult, because of the effect of front-end analysis on
‘addition’

Mean and Variance Normalization

• Estimate mean and variance of cepstral
feature vectors of an utterance

• For each cepstral vector (MFCC), subtract
mean and divide by variance

• This normalize the features distribution to
standard normal distribution (zero mean and
unity variance).

Mean and Variance Normalization

 frames

original

after CMN/CVN

Speech with

additive noise

Clean speech

•While convolutive noise causes the constant shift of cepstral coeff. temporal

trajectories, noise additive in spectral domain fills valleys in the trajectories

•In addition to subtracting mean, trajectory can be normalized to unity variance

(i.e. dividing by standard deviation) to compensate for his effect

window_size = 20; %20ms
shift = 10; %10ms
nfilts = 22;

[samples,fs,nbits] = wavread('C:\Users\abualsoud\Dropbox\Spoken Language
proc\experiments\sa1_tstDR2mgwt0.wav');

minfreq = 40;
maxfreq = fs/2;
window_size = floor((window_size/1000)*fs); % convert ms to number of samples
shift = floor((shift/1000)*fs);
overlap = window_size - shift;

window = hamming(window_size);

%y = buffer(s,window_size, overlap); % segmentation

num_samples = size(samples,1);

num_frames = floor(num_samples/(shift));
NFFT = 2^(ceil(log(window_size)/log(2)));
half = floor(NFFT/2)+1;

triangles = fft2melmx(half, fs, nfilts, 1, minfreq, maxfreq,0,1,0);

frame_num =0;
energy = zeros(1,num_frames);
y = zeros(num_frames,half);
fba = zeros(num_frames, nfilts);

 for sample_point =1:shift:num_frames*(shift)
 frame_num = frame_num+1;
 start = sample_point;
 finish = sample_point+window_size-1;
 if finish > size(samples,1)
 break;
 end
 speech_frame = window .* samples(start:finish);
 %%%%%%%%%%%%%
 temp = speech_frame'*speech_frame;
 energy(frame_num) = 10*log10(temp);
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 fftout = fft(speech_frame,NFFT);
 fftout = fftout(1:half);
 fftpower = abs(fftout).^2;
%%%%%%%%%

 fftpowlog= log(fftpower);
 y(frame_num, :) = fftpowlog;

 fba(frame_num,:) = triangles*fftpowlog;
 end
 y = y';
 fba = fba';
 pcolor(fba(:,100:330))

 mfcc = DCT(fba,12);
 figure
 pcolor(mfcc(:,100:330))
 fba2 = IDCT(mfcc);
 figure
 pcolor(fba2(:,100:330))
 %%%%%%%%%%%%%%%%%

 close all;
 %%%%%%%%%%%%%%%%%
 figure
 plot(fba(:,100),'b');
 figure; plot(fba2(:,100),'r');
 figure; plot(mfcc(:,100),'k');

