
Discrete Representation of Signal 

• Represent continuous signal into discrete form. 

 

 



Digitizing the signal (A-D) 

Sampling:  
measuring amplitude of signal at time t 

16,000 Hz (samples/sec) Microphone 
(“Wideband”): 

8,000 Hz (samples/sec) Telephone 

Why? 
– Need at least 2 samples per cycle 

– max measurable frequency is half sampling rate 

– Human speech < 10,000 Hz,  so need max 20K 

– Telephone filtered at 4K, so 8K is enough 



Quantization  
Representing real value of each amplitude as integer 

8-bit (-128 to 127) or 16-bit (-32768 to 32767) 

Formats: 
16 bit PCM 

8 bit mu-law; log compression 

LSB (Intel) vs. MSB (Sun, Apple) 

Headers: 
Raw (no header) 

Microsoft wav 

Sun .au 

40 byte 

header 

Digitizing Speech (II) 



Discrete Representation of Signal 

• Byte swapping 
– Little-endian vs. Big-endian 

• Some audio formats have headers 
– Headers contain meta-information such as sampling 

rates, recording condition 
– Raw file refers to 'no header' 
– Example: Microsoft wav, Nist sphere 

• Nice sound manipulation tool: sox.  
– change sampling rate 
– convert speech formats 



Mel-Frequency Cepstral Coefficients 
(MFCC) 



Windowing 

 

Slide from Bryan Pellom 



Windowing 

• Why divide speech signal into successive 
overlapping frames? 
– Speech is not a stationary signal; we want information about 

a small enough region that the spectral information is a 
useful cue. 

• Frames 
– Frame size: typically, 10-25ms 

– Frame shift: the length of time between successive frames, 
typically, 5-10ms 



Common window shapes 

• Rectangular window: 
 
 
 

• Hamming window 
 
 
 
 
 



Window in time domain 



MFCC 

 



Discrete Fourier Transform 

• Input: 
– Windowed signal x[n], n=0 … N-1 

• Output: 
– For each of N discrete frequency bands 
– A complex number X[k] representing magnidue and 

phase of that frequency component in the original 
signal 

• Discrete Fourier Transform (DFT) 
 
 
 

• Standard algorithm for computing DFT:  
– Fast Fourier Transform (FFT) with complexity N*log(N) 
– In general, choose N=2n  , e.g 256, 512 or 1024 



Discrete Fourier Transform computing 
a spectrum 

• A 24 ms Hamming-windowed signal 

– And its spectrum as computed by DFT 



MFCC 



Mel-scale 
• Human hearing is not equally sensitive to all 

frequency bands 

• Less sensitive at higher frequencies, roughly > 
1000 Hz 

• I.e. human perception of frequency is non-
linear: 



Mel-scale 

 
• Mel-scale is approximately linear below 1 kHz 

and logarithmic above 1 kHz 
 

• Definition: 



Mel Filter Bank Processing 

• Mel Filter bank 
– Uniformly spaced before 1 kHz 

– logarithmic scale after 1 kHz 



Mel-filter Bank Processing 

• Apply the bank of filters according Mel scale to 
the spectrum 

• Each filter output is the sum of its filtered 
spectral components 



MFCC 



Log energy computation 

• Compute the logarithm of the square 
magnitude of the output of Mel-filter bank 



Log energy computation 

• Why log energy? 

Logarithm compresses dynamic range of 
values 
– Human response to signal level is logarithmic 

– humans less sensitive to slight differences in amplitude 
at high amplitudes than low amplitudes 

Makes frequency estimates less sensitive 
to slight variations in input (power 
variation due to speaker’s mouth moving 
closer to mike) 

Phase information not helpful in speech 
 



MFCC 



The Cepstrum 

• One way to think about this 
– Separating the source and filter 
– Speech waveform is created by 

• A glottal source waveform 
• Passes through a vocal tract which because of its shape 

has a particular filtering characteristic  

• Articulatory facts: 
– The vocal cord vibrations create harmonics 
– The mouth is an amplifier 
– Depending on shape of oral cavity, some 

harmonics are amplified more than others 
 

 





We care about the filter not the source 

• Most characteristics of the source 
– F0 

– Details of glottal pulse 

• Don’t matter for phone detection 

• What we care about is the filter 
– The exact position of the articulators in the oral 

tract 

• So we want a way to separate these 
– And use only the filter function 



The Cepstrum 
• The spectrum of the log of the spectrum 

Spectrum Log spectrum 

Spectrum of log spectrum 



Thinking about the Cepstrum 



Mel Frequency cepstrum 

• The cepstrum requires Fourier analysis 
• But we’re going from frequency space back to 

time 
• So we  actually apply inverse DFT 

 
 
 
 

• Details for signal processing gurus: Since the log 
power spectrum is real and symmetric, inverse 
DFT reduces to a Discrete Cosine Transform (DCT) 



Another advantage of the Cepstrum 

• DCT produces highly uncorrelated features 
 

• We’ll see when we get to acoustic modeling that 
these will be much easier to model than the 
spectrum 
– Simply modelled by linear combinations of Gaussian 

density functions with diagonal covariance matrices 
 
 

• In general we’ll just use the first 12 cepstral 
coefficients (we don’t want the later ones which 
have e.g. the F0 spike) 



MFCC 



Dynamic Cepstral Coefficient 

• The cepstral coefficients do not capture energy 
 

• So we add an energy feature 
 

• Also, we know that speech signal is not constant 
(slope of formants, change from stop burst to 
release). 
 

• So we want to add the changes in features (the 
slopes). 
 

• We call these delta features 
 

• We also add double-delta acceleration features 



Delta and double-delta 

• Derivative: in order to obtain temporal information 



Typical MFCC features 

• Window size: 25ms 
• Window shift: 10ms 
• Pre-emphasis coefficient: 0.97 
• MFCC: 

– 12 MFCC (mel frequency cepstral coefficients) 
– 1 energy feature 
– 12 delta MFCC features  
– 12 double-delta MFCC features 
– 1 delta energy feature 
– 1 double-delta energy feature 

• Total 39-dimensional features 





Why is MFCC so popular? 

• Efficient to compute 
 

• Incorporates a perceptual Mel frequency scale 
 

• Separates the source and filter  
 

• IDFT(DCT) decorrelates the features 
– Improves diagonal assumption in HMM modeling 

 
• Alternative 

– PLP 
 
o Linear Prediction 
o Perceptual Linear Prediction (PLP) 





Speech Processing in Noisy 
Environment 



Types of Noise 

• Additive Noise 
– Degradation of the signal due to ambient acoustic noise 

– Extent of problem will depend on Signal-to-Noise Ratio (SNR), but 
also on how ‘speech like’ the noise is 

– Corresponds to addition of speech and noise signals in the time-
domain  

 

• Convolutive Noise 
– Changes in the speech signal due to changing room acoustics, 

changes in microphone, communication channel, etc 

– Corresponds to convolution with a speech signal in the time-domain 



• A block diagram of noise corruption 

 

Clean 

speech signal 

Channel 

Distortion 

Corrupted 

speech signal 

Additive noise 

+ 

Convolutional noise 

s(t) h(t) n(t) y(t) 

Noise Corruption 



Interaction with Front-End Processing 

• How different types of noise impact on the recognition 
process ?.. need to understand how they are transformed by 
front-end processing (i.e. feature extraction block) 

FB Input  

Speech 
DFT Cosine 

transform 

log 

Type of 
Noise 

Time 
Domain 

DFT Filter 
Bank 

log Cosine 
Transform 

Additive + + ~ + ? ~ max ? 

Convolutive * x ~ x ~ + ~ + 

 

Feature Extraction 



Convolutive Noise Compensation 

• Convolutive noise turns out to be the easiest to deal with 
 

• Manifested as addition of constant, or slowly varying, log 
power spectrum or MFCC vector 

 

• Simplest solution is cepstral mean subtraction (in 
MFCC/cepstral domain) or spectral mean subtraction (in log 
power spectrum domain) 



• Cepstral Mean Subtraction (CMS) 

– mean (over a num of frames) subtraction 

– lowpass filtering 

– eliminates communication channel spectral shaping 

Nmmkcmlcmlc kCMS ,...,1   )),;((avg);();( 

Cepstral Mean Subtraction (CMS) 



RASTA Processing 

• Vocal tract cannot move too slow or too fast 

 rate of change< norm rate of change > norm 

TIME 

filter 

trajectory of parameter  
as estimated from the signal 

time 

corrected trajectory 



RASTA Processing 

Approximated by IIR Filter: 
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RASTA filtering 
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RASTA filtered 

•Filtering log filter bank output (or equivalently 

cepstral) temporal trajectories by band pass filter 

•Remove slow changes to compensate for the 

channel effect (≈CMS over 0.5 sec. sliding window) 

•Remove fast changes (> 25Hz) likely not caused 

by speaker with limited ability to quickly change 

vocal tract configuration 

original 



Additive Noise Compensation 

• In the linear spectral domain, additive noise is still additive 

 

• Therefore, noise compensation can be achieved by 
subtracting an estimate of the noise spectrum from the noisy-
speech spectrum 

• Coping with additive noise explicitly in the MFCC domain is 
more difficult, because of the effect of front-end analysis on 
‘addition’ 



Mean and Variance Normalization 

• Estimate mean and variance of cepstral 
feature vectors of an utterance 

• For each cepstral vector (MFCC), subtract 
mean and divide by variance  

• This normalize the features distribution to 
standard normal distribution (zero mean and 
unity variance). 



Mean and Variance Normalization 

 frames 

original 

after CMN/CVN 

Speech with 

additive noise 

Clean speech 

•While convolutive noise causes the constant shift of cepstral coeff. temporal 

trajectories, noise additive in spectral domain fills valleys in the trajectories 

•In addition to subtracting mean, trajectory can be normalized to unity variance 

(i.e. dividing by standard deviation) to compensate for his effect 



window_size = 20; %20ms 
shift = 10; %10ms 
nfilts = 22; 
  
[samples,fs,nbits] = wavread('C:\Users\abualsoud\Dropbox\Spoken Language 
proc\experiments\sa1_tstDR2mgwt0.wav'); 
  
minfreq = 40; 
maxfreq = fs/2; 
window_size = floor((window_size/1000)*fs); % convert ms to number of samples 
shift = floor((shift/1000)*fs);  
overlap = window_size - shift; 
  
window = hamming(window_size); 
  
  
%y = buffer(s,window_size, overlap); % segmentation 
  
num_samples = size(samples,1); 
  
num_frames = floor(num_samples/(shift)); 
NFFT = 2^(ceil(log(window_size)/log(2))); 
half = floor(NFFT/2)+1; 
    
 



 
triangles = fft2melmx(half, fs, nfilts, 1, minfreq, maxfreq,0,1,0); 
  
frame_num =0;     
energy = zeros(1,num_frames);     
y = zeros(num_frames,half); 
fba = zeros(num_frames, nfilts); 
    
   for sample_point =1:shift:num_frames*(shift) 
        frame_num = frame_num+1; 
        start =  sample_point; 
        finish = sample_point+window_size-1;   
        if finish > size(samples,1) 
            break; 
        end 
        speech_frame = window .* samples(start:finish); 
        %%%%%%%%%%%%% 
        temp = speech_frame'*speech_frame; 
        energy(frame_num) = 10*log10(temp);  
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        fftout = fft(speech_frame,NFFT );  
        fftout = fftout(1:half);        
        fftpower =  abs(fftout).^2;  
%%%%%%%%% 



 fftpowlog= log(fftpower); 
        y(frame_num, :) = fftpowlog; 
         
        fba(frame_num,:) = triangles*fftpowlog; 
   end 
   y = y'; 
   fba = fba'; 
   pcolor(fba(:,100:330)) 
    
   mfcc = DCT(fba,12); 
   figure 
   pcolor(mfcc(:,100:330)) 
   fba2 = IDCT(mfcc); 
   figure  
   pcolor(fba2(:,100:330)) 
   %%%%%%%%%%%%%%%%% 
    
   close all; 
   %%%%%%%%%%%%%%%%% 
   figure 
   plot(fba(:,100),'b'); 
   figure;   plot(fba2(:,100),'r'); 
   figure;   plot(mfcc(:,100),'k'); 


